
Electrostatics & Magnetostatics

1. Introduction
The theory which describes physical phenomena related to the interaction between stationary

electric charges or charge distributions in space with stationary boundaries is called

electrostatics. For a long time electrostatics, under the name electricity was considered an

independent physical theory of its own, alongside other physical theories such as magnetism,

mechanics, optics and thermodynamics.

1.1. Coulomb’s law
It has been found experimentally that in classical electrostatics the interaction between

stationary, electrically charged bodies can be described in terms of a mechanical force. Let F

denote the force acting on a electrically charged particle with charge q located at x, due to the

presence of a charge q´ located at x´. According to Coulomb’s law this force is, in vacuum, given

by the expression

F(x) =






||
(1)

In SI units, the force F is measured in Newton (N), the electric charges q and q´ in Coulomb (C)

and the length | − ′| in metres (m). The constant ε0 = 8:8542 ×10
-12 Farad per metre (F/m).

1.2. The Electrostatic Field
Instead of describing the electrostatic interaction in terms of a ‘force action at a distance’, it turns

out that it is for most purposes more useful to introduce the concept of a field and to describe the

electrostatic interaction in terms of a static vectorial electric field Estat defined by the limiting

process

Estat = lim→



(2)

where F is the electrostatic force, from a net electric charge q´ on the test particle with a small

electric net electric charge q.

1.3. Magnetostatics
While electrostatics deals with static electric charges, magnetostatics deals with stationary

electric currents, i.e., electric charges moving with constant speeds, and the interaction between

these currents. Here we shall discuss this theory in some detail.



1.3.1 Ampère’s law
Experiments on the interaction between two small loops of electric current have shown that they

interact via a mechanical force, much the same way that electric charges interact.

Figure 1.: Ampère’s law describes how a small loop C, carrying a static electric current I
through its tangential line element dl located at x, experiences a magnetostatic force from a
small loop C´, carrying a static electric current I´ through the tangential line element dl´
located at x´. The loops can have arbitrary shapes as long as they are simple and closed.

In Figure 1, let F denote such a force acting on a small loop C, with tangential line element dl,

located at x and carrying a current I in the direction of dl, due to the presence of a small loop C´,

with tangential line element dl´, located at x´ and carrying a current I´ in the direction of dl´.

According to Ampère’s law this force is, in vacuum, given by the expression

F (x) =
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In SI units, μ0 = 4π× 10
-7 H/m is the vacuum permeability. From the definition of ε0 and μ0 (in SI

units) we observe that

ε0μ0 =



(F/m) × 4π×10-7 (H/m) =




(s2/m2)

which is a most useful relation.

1.3.2 The magnetostatic field

In analogy with the electrostatic case, we may attribute the magnetostatic interaction to a static

vectorial magnetic field Bstat. It turns out that the elemental Bstat can be defined as dBstat (x)

dBstat (x) =
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which expresses the small element dBstat(x) of the static magnetic field set up at the field point x

by a small line element dl´ of stationary current I´ at the source point x´. The SI unit for the



magnetic field, sometimes called the magnetic flux density or magnetic induction, is Tesla (T). If

we generalize expression (4) to an integrated steady state electric current density j(x), measured

in A/m2 in SI units, we obtain Biot-Savart’s law:

Bstat (x) =
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1.4. Electromagnetic Potentials

Instead of expressing the laws of electrodynamics in terms of electric and magnetic fields, it

turns out that it is often more convenient to express the theory in terms of potentials. This is

particularly true for problems related to radiation. Now we will introduce and study the

properties of such potentials and shall find that they exhibit some remarkable properties which

elucidate the fundamental aspects of electromagnetism and lead naturally to the special theory of

relativity.

1.4.1. The electrostatic scalar potential

The electrostatic field Estat(x) is irrotational. Hence, it may be expressed in terms of the gradient

of a scalar field. If we denote this scalar field by -ϕstat(x), we get

Estat(x) = - ∇ϕstat(x) (6)

Taking the divergence of this and using Equation (6), we obtain Poisson’s equation.

∇ϕ(x) = −∇.Estat(x) = −
()


(7)

A comparison with the definition of Estat, namely Equation (5), shows that this equation has the

solution

ϕ(x) =



∫
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where the integration is taken over all source points x´ at which the charge density ρ(x´) is non-

zero and α is an arbitrary quantity which has a vanishing gradient. An example of such a quantity

is a scalar constant. The scalar function ϕ(x) in Equation (8) is called the electrostatic scalar

potential.

1.4.2. The magnetostatic vector potential
Consider the equations of magnetostatics, we know that any 3D vector a has the property that

∇.(∇ × a) = 0 and in the derivation of Equation in magnetostatics we found that ∇. Bstat(x) = 0.

We therefore realize that we can always write



Bstat(x) = ∇ × Astat(x)

where Astat(x) is called the magnetostatic vector potential.

We saw above that the electrostatic potential (as any scalar potential) is not unique: we may,

without changing the physics, add to it a quantity whose spatial gradient vanishes. A similar

arbitrariness is true also for the magnetostatic vector potential.


